General Plan Advisory Committee Meeting

September 21, 2023

GPAC Roll Call

- 1. Dave Alden
- 2. Stephanie Blake
- 3. Phil Boyle
- 4. Erin Chmielewski
- 5. Mary Dooley
- 6. Jessie Feller
- 7. Ali Gaylord
- 8. Yensi Jacobo
- 9. Sharon Kirk
- 10. Roger Leventhal

11. Iliana Inzunza Madrigal 12. Roberto Rosila Mares 13. Brent Newell 14. Kris Rebillot 15. Bill Rinehart 16. Joshua Riley Simmons 17. Elda Vazquez-Izaguirre 18. Lizzie Wallack 19. Bill Wolpert

Supporting Access and Live Interpretation

- Please remember to speak slowly

 our interpreters are working
 hard to translate accurately
- Reduce the use of acronyms and make sure to explain them when you do use them

Meeting Overview

Roll Call and Logistics

General Public Comment (cards)

Project & Staff Updates

Flood and Sea Level Rise Modeling & Maps

- Presentation
- GPAC Clarifying Questions
- Public Comment (cards)
- GPAC discussion

Final GPAC Thoughts

General Public Comment

Project & Staff Updates

Blueprint for Carbon Neutrality (2023)

Public Draft (aka Climate Action Plan – CAP)

- Public Draft end of September
- Online feedback form
- 10/12: Open House
- 10/12: Climate Action Commission Meeting
- 11/9: Climate Action Commission Meeting

Related Projects

- Objective Design Standards for Multi-family Housing Developments
- Petaluma North SMART Station
 - Construction Award by Nov '23
 - \$30M secured for affordable housing
 - \$1.5M to develop a Specific Plan

VIEW LOOKING AT N. MCDOWELL BLVD

Project Roadmap

Upcoming Meetings – Timing Subject to Change

- 1. Introduction of Updated Flood & Sea Level Rise Modeling & Maps (today!)
- 2. Discussion of Flood Resilience Planning
- 3. Discussion of Land Use Alternatives
- 4. Review of Public Draft Policy Frameworks (by Working Groups)

Today: Understanding Flood Hazard Areas

- Today we are talking about flood hazards
 - From rain
 - From the Bay
- Flood risk planning will impact land use decisions and policy making
- Today we are focusing on how we understand hazard areas for the General Plan (mapping)
- Next meeting we will look at impacts

Clarifying Questions from GPAC Members

Flood and Sea Level Rise Modeling and Map

FLOODPLAIN MANAGEMENT Coordinate w/ FEMA **KEEPING** Improve Flow Prepare for **PETALUMA** River & Creeks the Future SAFE Update Flood Models / Maps

FLOOD MAPPING UPDATE PROCESS

HIGHLY EDUCATED STAFF

- 60 w/ advanced degrees in water resources engineering
- 14 w/ a PhD

LEADERS AND TEACHERS

 We teach nationwide – American Society of Civil of Engineers & Floodplain Managers

MANAGER - DAVE SMITH

 P.E., CFM, D.WRE – 20 Years experience performing / managing hydrologic and hydraulic modeling in Petaluma since 2005

CIVIL ENGINEERING FIRM

- International, regional, Petaluma
- 110 + Staff

HYDROLOGY MODELING, STORM WATER MANAGEMENT, WATERSHED RESTORATION, INFRASTRUCTURE PLANNING

• Recent SLR projects include multiple Bay Area Jurisdictions

PROJECT MANAGER - SEBASTIAN BERTSCH

Where does flood water come from?

AND BURNESS

Water comes down the land, creeks and river from rain

TABERCON REPORT

City of Petaluma General Plan | 20

Water also comes up the River from the Bay

CAREFE & REPAIL

City of Petaluma General Plan | 21

Flooding comes from many places

Source: Science and Modeling – Our Coast, Our Future (ourcoastourfuture.org)

3 Flood Types to Consider

- King Tide
 - The highest tides of the year
 - Happen every year
 - Tide gauges tell us this water level
- Rainfall
 - Rain falling on the city and watershed, trying to move down river
 - 1% chance of happening every year
 - Flood models tell us what floods
- Storm Surge
 - Extreme high water in the river due to atmospheric events, separate from rain
 - 1% chance of happening every year
 - Tide gauges/the US Army Corp of Engineers tells us this water level

What is a flood model?

- A software flood model considers 4 main factors
 - 1: The shape of the land and creeks
 - 2: Rainfall amount and location
 - 3: Amount and speed of run off
 - 4: Height of the River/Bay
- 1% Annual Flood Risk = 1% chance every year = 100 year flood
 - Common standard for Flood
 Planning

WE USED THE BEST MODEL

MODEL FEATURES	HEC-HMS and HEC-RAS 2D	XPSTORM
Great for out of bank flows		×
Most up to date		X
Can model outside Petaluma		X
Used regionally		
Bestprice		X
Developed by Army Corps		X

MODEL PROCESS WAS PRECISE, PETALUMA FOCUSED

Model Background

What is hydrology?

What is hydraulics?

PETALUMA FLOOD MODELING

Includes Climate Change Impacts, Uses Petaluma Specific Data

falls.

Hydrology (HEC-HMS)

- This is the
 Petaluma River
 watershed
- Flow estimated in each drainage area
- 154 subbasins

City of Petaluma General Plan | 29

Hydraulics (HEC-RAS 2D)

- Ground elevation
 data
- Structures

20

Roughness (streets vs. vegetation)

Iwb_1346 US Inside Bridge

60

Station (ft)

80

100

City of Petaluma General Plan | 30

Predicting the Future

- City intends to guide General Plan with predictions of future floods
 - Many variables were considered: Precipitation, Bigger Surge, Urban Cover
 - Sea Level Rise (SLR) will also have a significant impact, as it impacts River drainage

Source for SLR Predictions

- California Ocean Protection Council Guidance (OPC2018)
 - Used by numerous state and local agencies and counties/cities
 - Pr%ovides ranges of SLR, and how likely they are to happen in future decades
 - Recommends which predictions are appropriate for different planning efforts
 - Recommends assuming continued High Emissions (RCP)

Source for SLR Predictions

- California Ocean Protection Council Guidance (OPC2018)
 - Used by numerous state and local agencies and counties/cities
 - Provides ranges of SLR, and how likely they are to happen in future decades
 - Recommends which predictions are appropriate for different planning efforts

Sea Level Rise (SLR) Selections

Sea Level Rise (SLR) Selections

Using SLR in flood maps

- The maps most relevant for long term planning are 1.9' of SLR in Mid-Century and 3.4' in the Endof-Century
 - It is straightforward to explore how SLR affects King Tide and Storm Surge flooding
 - Considering how SLR affects Rainfall flooding requires our new model

King Tide and Storm Surge

• Current King Tide and Storm Surge patterns are layered on top of Sea Level Rise to predict what will flood in the future

SLR +1.9'

Future Flood Level Current Flood Level

Current Annual King Tide

SLR +1.9'
Current 100 year Storm Surge

Future Flood Level Current Flood Level

SLR effects on Rainfall flooding

- Considering how SLR impacts rainfall flooding requires updated rain model
 - Model Method
 - 1: Add SLR amount to current MHHW tide level
 - 2: Run the rain flood model, now with rainfall needing to "fight" the higher river elevation
 - 3: Model results may show extra flooded areas

What did we model?

- What are flood risks at mid-century (around 2050), if we look at
 - Rain and storm surge (Map 1)
 - King tides (Map 2)
- What are flood risks at the end of the century (around 2100), if we look at
 - Rain and storm surge (Map 3)
 - King tides (Map 4)
- Maps are next! First, questions?

Clarifying Questions from GPAC Members

Maps to be distributed

Mid-Century SLR (1.9 feet), Rain and Storm Surge

Mid-Century SLR (1.9 feet), King Tide

End-of-Century SLR (3.4 feet), Rain and Storm Surge

End-of-Century SLR (3.4 feet), King Tide

Where does SLR affect the City in the Future

• Lets zoom in to the same maps

Mid-Century SLR (1.9 feet), King Tide

Upcoming GPAC Meetings – Timing Subject to Change

- Introduction of Updated Flood & Sea Level Rise Modeling & Maps (today!)
- 2. <u>Discussion of Flood</u> <u>Resilience Planning</u>
- 3. <u>Discussion of Land Use</u> <u>Alternatives</u>
- 4. <u>Review of Public Draft</u> <u>Policy Frameworks (by</u> <u>Working Groups)</u>

Clarifying Questions from GPAC Members on Maps

Public Comments

Final GPAC Thoughts

Upcoming Community Meeting

- September 27, 2023
 - 6:00 8:00 pm
 - Virtual: Meeting details can be found at cityofpetaluma.org
 <u>https://us06web.zoom.us/j/91211018537</u>
 - Recorded for future reference
- More opportunity for community questions at this meeting
- GPAC members welcome to attend as community members

- City's current model developed in 2012 for General Plan
- "XP Storm"

• New Model: HEC-RAS (River Analysis System) 2D for hydraulics and HEC-HMS (Hydrologic Modeling System) for hydrology.

- What is hydrology?
- Hydrology analyses how rainfall turns into runoff. How much of the rain sinks in and how much runs off?
 - HEC-HMS inputs include:
 - Rainfall depth for a given storm (how deep), rainfall spatial distribution (where is it falling), and rainfall temporal pattern (how quickly it falls).
 - Loss rates (rate that water sinks into the ground)
 - Watershed/subbasin geometry (are the basins long and skinny for example, or more rounded). The basin response forms the shape of the discharge/flow hydrograph (flow vs. time).
 - HEC-HMS outputs include:
 - Flow hydrographs for each subbasin

- What is hydraulics?
- Hydraulics tells us how high the water gets in channels and overbanks.
 - HEC-RAS inputs include:
 - Flow hydrographs from HEC-HMS at each subbasin outlet.
 - Downstream boundary conditions (tide levels assumed)
 - Channel roughness (vegetation, roads/parking lots—not just where but how rough/smooth)
 - Topography (ground surface data excluding buildings/structures—"bare earth")
 - 2D grid limits
 - Structure data (bridges, culverts, floodwalls, weirs)
 - HEC-RAS outputs include:
 - Depth, velocity, and water surface elevations...everywhere within the 2D grid limits.

Hydrology (HEC-HMS)

- Rain falls unevenly on the Petaluma Watershed
- Every storm is different
- Recent data provided averages

Hydrology (HEC-HMS)

Instead of modeling the rainfall pattern of specific historical storms an "average" 100 year storm is modeled

City of Petaluma General Plan | 63

Hydraulics (HEC-RAS 2D)

- Calibration—what is it?
- We can compare the model to past storms
- Precipitation gages and stream gages

Legend

Precipitation

County Precipitation

Stream

Gages

х

Hydraulics (HEC-RAS 2D)

Legend

Gages

х

- Model calibration
 was performed for
 the largest rain
 events of record:
 - December 2005 (the "New Year's Flood")
 - January 2017
 - February 2019

Hydraulics (HEC-RAS 2D)

• Calibration results at Payran:

Figure-4-14.-2017-Stream-Gage-Data-Comparison:-Petaluma-R-@-Payran-St-(ID:2011)

Figure-4-7.-2005-Stream-Gage-Data-Comparison:-Petaluma-R-@-Payran-St-(ID:2011)

 Model predicts floods very similar to historical storms

Figure-4-23.-2019-Stream-Gage-Data-Comparison:-Petaluma-R-@-Payran-(ID:2011)

The Bay level impacts how much water can flow down the River

City of Petaluma General Plan | 67

TANKER A REPORT

How high is the river during a rain event?

- The model must make an assumption about the height of the River near the railroad drawbridge (near 101 bridge) during a storm
 - The river elevation is assumed to be the Mean Higher High Water (MHHW), as in previous models

What about King Tides?

- Why not assume the river is at King tide during the rain event?
 - King tide is an exceptionally high tide (typically during new or full moon around the Equinox)
 - It is very unlikely for 1%ACE Rain to happen during King Tide
 - Using "Mean Higher High Water" (MHHW) is sufficiently conservative

FEMA Map Update Process

- The City will soon begin the process to update our flood maps with FEMA
- Led by Public Works
- Including:
 - Technical review with FEMA
 - Community Engagement
- 1-2 year timeline to completion

Downstream Boundary Assumptions/Definitions

- The model doesn't assume a storm surge (ocean water moving upriver) happens at the same time as rainfall (rain moving down river)
- US Army Corps standards were followed.

Possible Changes to Precipitation and Storms

- Limited state guidance or local precedence to factor in changes
- Rain is expected to get more intense, and storms surge to get higher
- Available data in 2022 wasn't sufficient to include in model
- Draft policy to incorporate estimates in future flood model

Figure A-6. Projected Changes in Mean Annual Precipitation for the Sonoma County Region based on CMIP3 and CMIP5 Projections

Sonoma Water: Climate Resilience Efforts Appendix A

City of Petaluma General Plan | 72
Changes to Urban Cover

- Impervious surfaces = added pavement & buildings which cause more runoff
 - Issues include pollution, groundwater depletion, erosion, urban heat island, etc
 - Cause more flooding in small rain events
 - Model was stress tested
 - Not sensitive to higher impervious cover in city

Sherwood Design Engineers

City of Petaluma General Plan | 73

Hazard + Likelihood + Impact = Risk

RISK EXPOSURE MATRIX		IMPACT				
		Insignificant	Minor	Moderate	Major	Catastrophic
LIKELIHOOD	Almost Certain	Low	Medium	High	Critical	Critical
	Likely	Low	Medium	High	Critical	Critical
	Possible	Insignificant	Low	Medium	High	High
	Unlikely	Insignificant	Low	Low	Medium	Medium
	Rare	Insignificant	Insignificant	Insignificant	Low	Low

Floodplain Management in Petaluma

- Floods can happen anywhere and wreak havoc quickly
- Continually working to keep our community safe by minimizing flood risk and damage throughout the community
- Maintain Community Rating System (CRS) status to keep flood insurance rates low and help manage risk
- In addition to creating maps for planning we engineer projects to manage the flow of water through our river and creeks
 - Payran Reach Flood Walls,
 - Denman Reach Detention Ponds/Terracing
 - Capri Creek improvements
- Floodplain Maps Updated flood maps with state-of-the-art modeling technology and more robust data to better understand flood risks from rain and storm
- Sea Level Rise Maps Petaluma-specific Sea Level Rise scenarios layered over the rainfall flood maps in areas of Petaluma affected by incoming tide levels to understand combined risks for long-term planning.
- Updated models will help inform General Plan policies in the as well as provide critical information to inform upcoming flood management projects.

